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Octylphenol and UV-B Radiation Alter Larval Development and Hypothalamic
Gene Expression in the Leopard Frog (Rana pipiens)

Douglas Crump, David Lean, and Vance L. Trudeau

Department of Biology and Centre for Advanced Research in Environmental Genomics (CAREG), University of Ottawa, Ottawa, Ontario,
Canada

The presence of an increasing number of
endocrine-disrupting chemicals (EDCs) in the
environment may result in chronic exposure
of humans and wildlife to low concentrations
of contaminants including pesticides (e.g.,
dichlorodiphenyltrichloroethane, methoxy-
chlor), polychlorinated biphenyls, synthetic
steroids (e.g., ethinylestradiol), and some
alkylphenolic compounds such as octylphenol
(OP). Among wildlife species, the focus of
research on EDC exposure has been on ani-
mals associated with wetlands or aquatic habi-
tats receiving contaminated effluent and
agricultural runoff, in which pollutant expo-
sure has been linked to endocrine disruption
(1–4). For example, developing alligator
embryos collected from sites contamined with
p,p´-dichlorodiphenyldichloroethene and
1,1´-(2,2-dichloroethylidene)bis[4-chloroben-
zene] displayed altered sex determination,
gonadal steroidogenesis, cliterophallus size,
and endocrine or reproductive organ mor-
phology (1). It has been hypothesized that
exposure of amphibians to pollutants may
disrupt endocrine systems controlling meta-
morphosis, stress response, and sexual devel-
opment (5–10). Exposure to UV-B radiation
(280–320 nm) has also been found to dis-
rupt development in several amphibian

species (11–15). The vulnerability of
amphibian species to environmental stressors
such as EDCs and UV-B may be associated
with amphibian population declines that
have been occurring worldwide since the
1960s (16). 

In a report on environmental endocrine
disruption, the U.S. Environmental Protection
Agency suggested that amphibians might be
good sentinel animal models for laboratory
and field exposure studies (17). Several EDCs,
including OP, can displace radiolabeled 17-β
estradiol ([3H]E2) from the estrogen receptor
(18), cause significant feminization at low
concentrations (e.g., 10 nM OP), and stimu-
late vitellogenin (VTG) mRNA expression in
cultured hepatocytes in Xenopus frogs (9).
Reeder et al. (6) reported a weak association
(p = 0.07) between the detection of the herbi-
cide atrazine and the prevalence of intersex
individuals of the cricket frog (Acris crepi-
tans). These authors also found that sex ratios
favored males in juvenile A. crepitans col-
lected from sites contaminated by polychlori-
nated biphenyls and polychlorinated
dibenzofurans. Nishimura et al. (19) raised
X. laevis in water containing different con-
centrations of E2 and observed malforma-
tions of the head and abdomen, suppressed

organogenesis, and suppressed nervous sys-
tem development at 10-5 M. Although the
dose Nishimura et al. (19) used exceeds
physiologic levels, the findings suggest that
estrogen exposure can disrupt brain develop-
ment. Accelerated metamorphosis was
observed after the treatment of Bufo bufo
and B. americanus tadpoles with E2 (20) and
2,3,7,8-tetrachlorodibenzo-p -dioxin
(TCDD) (21). Cheek et al. (7) observed that
the herbicide acetochlor, in the presence of
exogenous thyroid hormone T3, disrupted
development by accelerating metamorphosis
in R. pipiens. 

Corticotropin-releasing hormone (CRH)
plays a central role in amphibian metamor-
phosis by stimulating the pituitary-thyroid
axis, resulting in elevated T3 levels in the
blood (22–25). This thyroid-regulating
effect of CRH in amphibians is in addition
to the well-characterized effects of CRH on
adrenocorticotropin hormone (ACTH)
release in vertebrates (24). The frog hypo-
thalamus can be stimulated by biotic or abi-
otic factors in the larval habitat (e.g., pond
desiccation) to release the neuropeptide
CRH (22). Corticosteroids are also released
after exposure to stress and can synergize
with T3 to accelerate metamorphosis (22).
Inhibition of metamorphosis is mediated by
hypothalamic neurosecretion of the tripep-
tide thyrotropin-releasing hormone, which
controls the biosynthesis and release of the
pituitary hormone prolactin (PRL) (24,26).
PRL antagonizes metamorphosis and pro-
motes larval growth leading to larger animals
at metamorphosis (24,26). Thyroid status is
easily altered by the addition of a variety of
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Articles

We assessed octylphenol (OP), an estrogenic endocrine-disrupting chemical, and UV-B radiation,
a known stressor in amphibian development, for their effects on hypothalamic gene expression
and premetamorphic development in the leopard frog (Rana pipiens). Newly hatched tadpoles
were exposed for 10 days to OP alone at two different dose levels; to subambient UV-B radiation
alone; and to two combinations of OP and UV-B. Control animals were exposed to ethanol vehi-
cle (0.01%) exposure, a subset of tadpoles from each treatment group was raised to metamorpho-
sis to assess differences in body weight and time required for hindlimb emergence. Tadpoles from
one of the OP/UV-B combination groups had greater body weight and earlier hindlimb emer-
gence (p < 0.05), but neither OP nor UV-B alone produced significant changes in body weight or
hindlimb emergence, indicating a potential mechanism of interaction between OP and UV-B. We
hypothesized that the developing hypothalamus might be a potential environmental sensor for
neurotoxicologic studies because of its role in the endocrine control of metamorphosis. We used a
differential display strategy to identify candidate genes differentially expressed in the hypothala-
mic region of the exposed tadpoles. Homology cloning was performed to obtain R. pipiens gluta-
mate decarboxylases—GAD65 and GAD67, enzymes involved in the synthesis of the
neurotransmitter γ-aminobutyric acid (GABA). cDNA expression profiles revealed that OP and
UV-B affected the levels of several candidate transcripts in tadpole (i.e., Nck, Ash, and phospholi-
pase C γ-binding protein 4 and brain angiogenesis inhibitor-3) and metamorph (i.e., GAD67,
cytochrome C oxidase, and brain angiogenesis inhibitor-2 and -3) brains. This study represents a
novel approach in toxicology that combines physiologic and molecular end points and indicates
that levels of OP commonly found in the environment and subambient levels of UV-B alter the
expression of important hypothalamic genes and disrupt tadpole growth patterns. Key words:
amphibians, angiogenesis, endocrine-disrupting chemicals, estradiol, frogs, GABA, hypothalamus,
Rana pipiens. Environ Health Perspect 110:277–284 (2002). [Online 12 February 2002]
http://ehpnet1.niehs.nih.gov/docs/2002/110p277-284crump/abstract.html



hormones or T3 synthesis inhibitors to water
(23), indicating that the hypothalamo–
pituitary–thyroid axis is extremely vulnerable
to endocrine disruption. Premature meta-
morphosis and/or abnormal growth patterns
could alter fitness and survivorship in
amphibians (27).

Alkylphenol polyethoxylates (APEOs) are
a large group of nonionic surfactants in com-
mercial production [approximately 250,000
tons produced per year (28)] that enter the
aquatic environment predominantly via
sewage treatment plants and pulp and paper
mills (3,29,30). Upon discharge, APEOs are
rapidly degraded to form relatively stable,
hydrophobic metabolites; principally the
alkylphenols nonylphenol (NP) and OP. OP
and NP are estrogenic and stimulate VTG
gene expression in trout hepatocytes, induce
growth of several breast cancer cell lines (e.g.,
MCF-7 and ZR-75), inhibit testicular growth
in rainbow trout, cause feminization in
Xenopus, and competitively bind to both trout
and mouse estrogen receptors (9,29–31).
Blázquez et al. (32) found that 1 µM OP
caused 50% mortality among immature male
goldfish 20 days after exposure. There have
been no reports on amphibian toxicity data
for OP. Most evidence indicates that regard-
less of the species model, OP, at concentra-
tions ranging from 0.1 µM to 10 µM, is a
biologically active contaminant (30–32).
Indeed, there is reason for concern because
OP has been found at significant concentra-
tions in fresh water (< 2.0 pM–2.5 nM), sed-
iments (< 0.010–1.8 µg/g dry weight), and
sewage treatment plant effluent (0.6–12 nM)
and sludge (< 0.005–12.1 µg/g dry weight)
in North America (33,34). Waterborne OP
levels of approximately 63 nM have been
reported in rivers and estuaries in the United
Kingdom (35).

Previous studies have shown that UV-B
radiation (280–320 nm) can disrupt normal
development and hinder hatching success
and larval survivorship of many amphibian
species (11,12). Severe deformities including
lordosis (curvature of the spine), bloating/dis-
tension, and abnormal development of the
presumptive cornea were common patholo-
gies associated with UV-B exposure (13,14).
Ankley et al. (15) reported symmetrical
hind-limb ectromelia and ectrodactyly after
R. pipiens tadpoles were exposed to low levels
(44 µW/cm2) of UV-B. Again, metamorphic
alterations of this nature in the wild would
likely impair predator avoidance, reproduc-
tive success, and overall fitness. UV-B can
also potentiate the toxicity of several pesti-
cides and polycyclic aromatic hydrocarbons
with respect to amphibian survivorship
because of the generation of toxic pho-
tometabolites (36,37). Ahel et al. (38) deter-
mined the kinetics of OP photolysis in

natural waters and calculated a half-life of
approximately 10–15 hr. However, the
photometabolites of OP were not identified.
Bennie (34) noted that OP was relatively
resistant to microbial degradation but that
the final degradation products were water
and carbon dioxide. 

In the current study, we used sublethal,
nonteratogenic levels of OP and UV-B to
determine whether an interaction existed
between these two stressors with respect to
mRNA expression in the brain and effects
on metamorphosis, specifically growth rate
and hind-limb emergence (HLE). We
focused on the tadpole diencephalon (preop-
tic/hypothalamic area) because the gene
expression program for neural development
of this brain region has been characterized
(23). In addition, many aspects of hypothal-
amic function are modulated by sex steroids
(32), so we hypothesized that the developing
hypothalamus would be an effective and
novel environmental sensor for neurotoxico-
logic studies.

Using a rapid molecular screening tech-
nique, we set out to isolate and identify can-
didate molecules in the hypothalamic region
of developing leopard frog (R. pipiens) tad-
poles that were differentially regulated by
OP and UV-B, alone and in combination, as
initially determined using differential dis-
play. We performed homology cloning to
obtain R. pipiens glutamate decarboxylases
GAD65 and GAD67, enzymes involved in
the synthesis of the neurotransmitter
γ-aminobutyric acid (GABA). We used a
multiple-gene dot blot in semiquantitative
reverse Northern hybridization experiments
to determine the extent to which the expres-
sion patterns of candidate molecules were
altered after treatment with OP and UV-B.
We also studied the potential interaction
between OP and UV-B on gene expression
profiles.

Materials and Methods

Animals and rearing conditions. Two experi-
ments were conducted with animals from
different sources. For experiment 1 (30
January 1999) we used animals from an
induced breeding event to isolate candidate
differentially expressed molecules from tad-
pole brains. For experiment 2 (2 May 1999)
we used animals from naturally fertilized eggs
to isolate candidate differentially expressed
molecules from metamorph brains. We 
also assessed growth and premetamorphic 
development. 

Adult R. pipiens were purchased from a
commercial supplier (Charles Sullivan & Co.,
Nashville, TN, USA) and housed in a flow-
through aquarium with dry land refuge areas
at 18°C. They were fed mealworms with
Reptovit vitamin supplement (Terrafauna,

Morris Plains, NJ, USA). For males and
females, breeding was induced in mid-
January 1999 by two injections of des-Gly10

[D-His (Bzl)6]-luteinizing hormone-releas-
ing hormone ethylamide (Sigma, St. Louis,
MO, USA) 4 days apart at a dose rate of 50
ng/g in frog saline (0.6% NaCl). Fertilized
eggs were maintained in polystyrene con-
tainers with aerated, filtered water (pH 7.0;
dissolved oxygen 8.4–10 mg/L; 16.5–18°C)
until stage 21 (39), after which they were
distributed to the respective treatment expo-
sures (experiment 1). In addition we col-
lected two broods of naturally fertilized
R. pipiens eggs on 29 April 1999 from a typi-
cal breeding pond on the campus of Trent
University, Peterborough, Ontario (44°22’
N, 78°17’ W) and used them in experiment
2. All animal experimentation followed the
standards and guidelines of the Canadian
Council of Animal Care (40). 

Conditions of exposure. We conducted a
preliminary experiment to determine the
7-day LC50 (50% lethal concentration) for
R. pipiens tadpoles. This was important so
that subsequent exposures would be sub-
lethal and environmentally relevant. We
conducted experiments 1 and 2 under the
same OP/UV-B regimes, and they lasted for
10 days. Fifteen tadpoles were reared in each
100 × 15 mm Pyrex petri dish (working vol-
ume 100 mL) and exposed in a controlled
environmental chamber (18°C; 12:12 hr
light:dark photoperiod) to two concentra-
tions of the environmental estrogen OP
(1 nM, 1 µM; groups OP1 and OP2, respec-
tively), a subambient level of UV-B radiation
(7 µW/cm2; group UV), and their combina-
tions, groups UVOP1 and UVOP2. In addi-
tion, an extra group receiving 0.01% ethanol
served as a control. We prepared OP stock
solutions (20.6 µg/mL, 20.6 ng/mL) by dis-
solving 99% pure technical grade 4-OP
(Aldrich Chemical Co., Milwaukee, WI,
USA) in 95% ethanol. We prepared the
nominal concentrations by adding 100 µL of
the appropriate OP stock solution to 1 L fil-
tered water. Control and UV-B-only groups
were treated with a 0.01% ethanol vehicle.
The water was replaced every 48 hr during
the study.

The supplemental lighting consisted of
UV-B (UBL FS20T12/UVB-BP) and UV-A
(combination of Cool White Sylvania
F20T12 CW and NEC T10 Black Light
Blue) lamps, as well as background labora-
tory lighting supplied by full spectrum bulbs
(Verilux F40T12VLX; both from Sylvania,
Mississauga, ON, Canada). Light panels (4
feet long) were positioned above the expo-
sure containers to attain 7 µW/cm2 UV-B.
These are subambient levels because summer
levels of ambient UV-B in eastern Ontario
vary between 100 and 250 µW/cm2 (12,41).
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The UV lamps were on for 6 hr per day
(1000–1600 hr), and UV measurements
were carried out using an Oriel GOLDILUX
UV meter with interchangeable UV-B and
UV-A probes (ThermoOriel, Stratford, CT,
USA). 

The experiments were performed with
four replicates per treatment. Each petri dish
had 15 tadpoles that were fed Nutrafin fish
flakes (Rolf C. Hagen, Montreal, Canada)
daily ad libitum as of stage 24 [day 5 of the
exposure (39)]. After the 10-day exposure,
tadpoles from experiment 1 were anes-
thetized using MS222 (Sigma), and the
diencephalon, which contains the develop-
ing preoptic/hypothalamic area, was rapidly
dissected and frozen on dry ice for subse-
quent isolation of poly (A)+RNA. To obtain
sufficient tissue, we pooled diencephalons
from 10 tadpoles in each of four indepen-
dent replicates per treatment.

Postexposure developmental effects. After
experiment 2 (12 May 1999), 20 tadpoles
[stage 25 (39)], from a total of 60, were ran-
domly selected from each of the 6 experi-
mental groups and transferred into clean
water in 4.5-L grow-out containers to moni-
tor premetamorphic growth and develop-
ment. The tadpoles were kept in a separate
environmental chamber with no background
UV-B under a 12:12 hr light:dark photope-
riod supplied by full spectrum lamps (1–2
µW/cm2 UV-A) and a constant temperature
of 18 ± 1°C. To minimize density stress dur-
ing tadpole development, we used two con-
tainers per group. Tadpoles were fed ad
libitum daily, and overall health was moni-
tored. Two months after the initial 10-day
exposure (16 July 1999) stage, 29 tadpoles
(39) were weighed to assess potential treat-
ment-related differences in body weight.
The onset of HLE, defined as stage 36 (39),
of individual tadpoles was also documented
daily. At metamorphic climax (tail resorp-
tion), hypothalami were rapidly dissected
and frozen on dry ice for isolation of
poly(A)+RNA. We combined hypothalamic
tissue from two tadpoles in each of four
independent replicates per treatment group. 

Differential display and transcript iden-
tification. The differential display methodol-
ogy used in this study was similar to 
our previously reported strategy (42).
Poly(A)+RNA from diencephalons from all
treatments of experiment 1 and metamorph
hypothalami from all treatments of experi-
ment 2 was isolated using the Straight A’s
mRNA isolation system (Novagen, Madison,
WI, USA) and 100 ng was reverse transcribed
using Superscript II (Gibco, Gaithersburg,
MD, USA) to cDNA using one of three sin-
gle 18-base arbitrary primers (primer A3: 5´-
AATCTAGAGCTCTCCTGG-3´; primer
B3: 5´-CATACACGCGTATACTGG-3´;

primer C3: 5´-CCATGCGCATGCAT-
GAGA-3´). The resulting cDNAs were then
amplified by polymerase chain reaction
(PCR) in the presence of high specific-activ-
ity radiolabeled nucleotides ([32P]dCTP; 10
mCi/mL) and the original primer used for
cDNA first-strand synthesis. Amplification
was carried out in a thermocycler with a sin-
gle cycle of low-stringency amplification
(94°C, 1 min/36°C, 5 min/72°C, 5 min)
followed by 40 cycles with higher stringency
[94°C, 1 min/54°C (for primers A3 and B3);
56°C (for primer C3), 2 min/72°C, 2 min].
We separated and reamplified PCR products
following Blázquez et al. (42). Of approxi-
mately 50 bands on the differential display
gel, only those few transcripts that displayed
an unequivocal presence/absence pattern in
the various OP and UV-B treatments were
considered differentially regulated. The dif-
ferentially expressed transcripts were cloned
into a pCR II-TOPO vector and trans-
formed in E. coli competent cells using the
TOPO TA Cloning Kit (Invitrogen,
Groningen, The Netherlands). cDNA was
sequenced by Canadian Molecular Research
Services Inc (Ottawa, Ontario, Canada)
using simultaneous bidirectional sequencing
reactions with the DYEnamic Cycle
Sequencing Kit (US79535) from Amersham
Pharmacia Biotech (Baie d’Urfé, Québec,
Canada) and IRD700 and IRD800 labeled
vector primers (LiCor, Lincoln, NE, USA)
flanking the DNA insertion site. The
sequencing reactions were separated on a
LiCor 4200L sequencer and analyzed with
Sequencer 4.0 (Gene Codes Corporation,
Ann Arbor, MI, USA). Sequence results
were compared to known sequences available
in GenBank using the BLAST search accessi-
ble through the National Center for
Biotechnology Information (43). 

Reverse Northern multiple-gene dot blot.
We used the reverse Northern technique,
considered to be semiquantitative (44,45), to
detect changes in the abundance of the
mRNA transcripts isolated by differential dis-
play and homology cloning. Poly(A)+RNA
was purified from brain tissue collected dur-
ing experiment 2 using the Straight A’s
mRNA isolation system (Novagen), and 200
ng was reverse transcribed following the
methods of Parfett et al. (44), except that
Superscript II (Gibco) was used in place of
M-MLV reverse transcriptase. For this exper-
iment, we used only brain tissues from the
low level of OP (1 nM) and UV-B, alone and
in combination, and the solvent control. We
synthesized second-strand cDNA in the same
salts/buffer mixture as the first-strand, and
the 50 µL reaction mix contained 1.5 µL
fresh deoxynucleotide triphosphates (10
mM), 1 µl bovine serum albumin (BSA; 0.1
µg/µL), 0.5 µL RNAse H (0.027 U/µL), and

0.5 µL E. coli DNA polymerase holoenzyme
I (0.1 U/µL). The second-strand cDNA was
incubated at 15°C for 1 hr, extracted with
phenol, and precipitated with ethanol. Probe
synthesis consisted of labeling 100 ng of dou-
ble-stranded DNA with [32P]dCTP using the
Amersham Pharmacia random primer/T7
DNA polymerase oligo-labeling kit.

We chose a composite selection of seven
candidate genes isolated by differential display
from both tadpole and metamorph brains for
the multiple-gene dot blot. Very few brain-
specific molecules of any class have been
cloned from the leopard frog. Thus the differ-
ential display strategy allowed for rapid isola-
tion of candidate genes altered by UV-B and
OP. In addition, the two isoforms of leopard
frog glutamate decarboxylase [accession num-
bers AF202124 (GAD67); AF202125
(GAD65); Trudeau et al. (46)] and snapping
turtle (Chelydra serpentina) β-actin (100%
identical at the predicted amino acid level
with Xenopus β-actin) were included, giving a
total of 10 genes. To isolate approximately 30
µg of purified cDNA insert required for the
dot blots, the Qiagen Plasmid Maxi Kit
(Qiagen, Mississauga, ON, Canada) was
used. cDNA inserts were digested with EcoRI
(Gibco) and extracted from 1% agarose gels
using the QIAquick gel extraction kit
(Qiagen). Purified cDNA [300 ng/dot pre-
pared in 240 µL 12 × standard sodium citrate
(SSC)] of each of the 10 molecules was dot-
ted, in triplicate, onto Hybond-N+ mem-
branes (Amersham Pharmacia), producing a
10 × 3 gene array. Dot blots were made
using a 96-well Schleicher and Schuell appa-
ratus. Dot blots were hybridized (44) for 48
hr at 55°C with denatured, [32P]-labeled
double-stranded cDNA synthesized from
poly(A)+RNA from the various treatment
groups to detect changes in the relative
abundance of the 10 mRNA species. 

After hybridization, membranes were
sequentially washed for 30 min from low [2
× SSC/0.1% sodium dodecyl sulfate (SDS)
at 55°C] to high stringency (0.1 ×
SSC/0.1% SDS at 55°C), and specific
hybridization signals were visualized with the
BioRad phosphor-imaging system and quan-
tified using Quantity One software (BioRad
Laboratories, Hercules, CA, USA). All data
were normalized to β-actin, as it did not
change with OP or UV-B treatments. 

Statistical analysis of data. We used lin-
ear interpolation to estimate the LC50
value. The line between the two nearest
concentrations that produced mortality lev-
els above and below 50% was used in the
calculation. We analyzed tadpole weight
and age at HLE using a two-way analysis of
variance (ANOVA). A post-hoc Fisher’s
least significant difference (LSD) multiple
comparisons test was performed to identify
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differences between treatment groups. The
average of internal triplicates on one mem-
brane was calculated per dot blot, and each
treatment group had an independent repli-
cate of three or four blots (n = 3 or 4) to
ensure reproducibility. Gene expression data

were not normal, so we used Friedman’s test
(a two-way ANOVA on the ranked data) to
test for significant interactions between OP
and UV-B with respect to mRNA expression
(47). This was followed by Fisher’s LSD test
to determine differences between groups
(47). For all statistical procedures, group
means were considered different if p < 0.05.
As indicated, gene expression data were non-
parametric and therefore the median rather
than the mean of each treatment group has
been presented (47). We used Systat 7.0.1
software (SPSS Inc., Chicago, IL, USA) for
all statistical procedures.

Results

LC50 for OP

The calculated 7-day LC50 value for water-
borne OP was 2.8 µM (Figure 1). Figure 1
shows that the toxic response was extremely
abrupt: At 2.5 µM there was minimal

mortality, and at 3 µM there was 84% mor-
tality. The R. pipiens tadpoles exposed to
1 µM OP in this study displayed minimal
(approximately 5%) mortality (Figure 1),
and, subsequently, the levels of OP used
were at or below 1 µM. No additional
increases in mortality were observed in the
1 µM group between 7 and 10 days (data
not shown). The ethanol-exposed control
group displayed an extremely low mortality
rate of approximately 2% (Figure 1). 

Postexposure Developmental Effects
Tadpole body weight (wet weight) at stage
29 (39) changed according to early life-stage
exposure. There was no change in weight in
animals treated with OP alone (groups OP1
and OP2). However, tadpole weight in the
UV group was significantly reduced.
Moreover, tadpoles treated with a combina-
tion of 1 µM OP plus UV-B (group
UVOP2) were larger than tadpoles in all
other treatments (Figure 2A). Treatments
with either OP or UV-B (groups OP1, OP2,
and UV) alone had no effects on the onset of
HLE, stage 36 (39). However, tadpoles
treated with 1 µM OP plus UV-B (group
UVOP2) displayed significant acceleration of
HLE compared to all other treatments
(Figure 2B). 

Identification of Putative Treatment-
Responsive Genes Using Differential
Display
Tadpole diencephalon. The differential dis-
play strategy identified three candidate cDNA
transcripts altered by OP, one transcript
altered by UV-B, and two molecules that
were unchanged based on a similar band
intensity across all treatments (Table 1). The
expression of a cDNA fragment (774 bp)
approximately 66% identical to the 3´ end of
human and rat plectin was potentially
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Figure 1. The dose–response curve for water-
borne OP with respect to newly- hatched leopard
frog (R. pipiens) tadpoles after exposure to eight
different concentrations of OP.
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Figure 2. The effects of early exposure to OP (1 nM and 1 µM; groups OP1 and OP2, respectively) and UV-B
radiation (7 µW/cm2; group UV), and their combinations (groups UVOP1 and UVOP2), on premetamorphic
parameters of R. pipiens. (A) Overall body weight (wet weight) of stage 29 (Gosner) tadpoles. (B) Day at
stage 36 (Gosner; hind-limb toe development) as a function of treatment. Data are expressed as mean ±
SEM. Different letters indicate statistical differences (p < 0.05).

Table 1. mRNA transcripts (with accession numbers) potentially altered by OP and UV-B in the hypothalamic tissue of leopard frog (R. pipiens) tadpoles and meta-
morphs as determined using differential display.

Stage, molecule (accession no.) Functions cDNA length Primer Percent identitya Treatment effects

Tadpole
Plectin (AF279869) Mechanical strength for cytoskeleton; 774 bp C3 66 (rat, X59601) OP1 ↑

structural integrity
NAP4 (AF279870) Signal transduction; 798 bp C3 89 (human, PC4427) OP1 ↑

Growth factor action
BAI2 (AF279868) Development of glioblastoma 517 bp A3 59 (human, NP 001694) OP1 ↓

OP2 ↓
Arcadlin (AF279872) Ca2+ signaling; 403 bp B3 56 (rat, BAA82442) UV ↓

synaptic reorganization
Cytochrome C oxidase chain I Mitochondrial respiratory protein; 676 bp B3 62 (alligator, AAD09982) No change
(AF279871) brain oxidative phosphorylation
NADH dehydrogenase subunit 4 Glycolosis; cellular respiration 898 bp A3 54 (goldfish, BAA31247) No change
(AF279867)

Metamorph
BAI3 (AF279866) (see BAI2) 567 bp A3 90 (human, NP 001695) No change
NADH dehydrogenase subunit 4 Glycolosis; 896 bp A3 54 (goldfish, BAA31247) All treatments ↑
(AF279867) cellular respiration except control

Treatments were OP1 (1 nM), OP2 (1 µM), and UV (7 mW/cm2). ↑ = increased expression; ↓ = decreased expression. 
aAt the predicted amino acid level; in parentheses is the species and accession number of the GenBank sequence for the first BLAST search hit. 



increased by 1 nM OP. Another transcript
(798 bp) that revealed a potential increase in
expression following 1 nM OP treatment was
89% identical to human Nck, Ash, and phos-
pholipase C γ-binding protein 4 (NAP4). The
expression of a 517-bp transcript was poten-
tially decreased by both 1 nM and 1 µM OP
and was 59% identical to human brain-spe-
cific angiogenesis inhibitor 2 (BAI2). A
403-bp transcript displayed a potential
decrease of expression after UV-B treatment
and was 56% identical to rat arcadlin. Finally,
the expression of cytochrome C oxidase chain
I, an important mitochondrial proton-pump-
ing respiratory protein, and NADH dehydro-
genase subunit 4, involved in glycolosis and
cellular respiration, appeared to be unchanged
across all treatments.

Metamorph hypothalamus. The expres-
sion of a 567-bp transcript that was 90%
identical to human brain-specific angiogene-
sis inhibitor 3 (BAI3) was determined to be
unchanged based on differential display
(Table 1). Differential display also identified
a 896-bp fragment in the metamorph hypo-
thalamus that showed a potential increase in
expression after exposure to 1 nM and 1 µM
OP, alone and in combination with UV-B
(groups OP1, OP2, UVOP1, and UVOP2,
respectively). This molecule was 54% identi-
cal to goldfish NADH dehydrogenase sub-
unit 4 (Table 1). Note that the expression of
NADH dehydrogenase subunit 4 mRNA
was unchanged in the tadpole brain, which
suggests a stage- and treatment-specific shift
in expression of this molecule.

Determination of Gene Expression
Using Reverse Northern Blot Analysis
Tadpole diencephalon. Octylphenol (1 nM;
group OP1) induced a 3-fold increase in the
expression of NAP4 mRNA (Figure 3A),
confirming the initial differential display
results (Table 1). All other treatments were
without effects (Figure 3A). Although BAI3
mRNA was originally isolated from the
hypothalamus of R. pipiens metamorphs, we
found that its expression in the tadpole dien-
cephalon was increased 5-fold in animals
exposed to UV-B (Figure 3B). All other
treatments were without effects (Figure 3B).
In addition, we verified that the expression
of cytochrome C oxidase chain I and
NADH dehydrogenase subunit 4 was
unchanged across the various treatment
exposures (data not shown). The median val-
ues for plectin mRNA expression were not
greater in the OP treatment and in fact were
similar across all treatments (data not
shown). This result, together with those of
BAI2 and arcadlin, are inconsistent with the
results obtained from the differential display
(Table 1). Thus, the reverse Northern exper-
iments confirmed the expression pattern of

three of the six transcripts originally isolated
from tadpole diencephalon using differen-
tial display. A similar level of confidence
has been reported for differential display
and reverse Northern blots in other verte-
brate systems (45). In the tadpole dien-
cephalon, the expressions of GAD65 and
GAD67 were similar across all treatments
(data not shown). 

Metamorph hypothalamus. GAD67
mRNA levels were not affected by OP (1 nM;

group OP1) or UV-B alone. However, the
expression of GAD67 mRNA was signifi-
cantly decreased in the hypothalamus of
metamorphs exposed to OP compared to
those exposed to UV-B alone. Moreover,
GAD67 expression was increased by approxi-
mately 2-fold in the hypothalamus of meta-
morphs coexposed to OP plus UV-B (group
UVOP1; Figure 4A). The expression pattern
of BAI2 mRNA in the various treatment
groups was similar to that observed for
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GAD67 (Figure 4B). Early exposure to OP
(group OP1) resulted in a 2-fold decrease in
BAI2 expression, whereas UV-B exposure
alone did not affect BAI2 mRNA levels
(Figure 4B). In contrast to OP and UV-B
treatments alone, the combined OP plus
UV-B exposure (group UVOP1) signifi-
cantly increased BAI2 mRNA expression in
the metamorph hypothalamus (Figure 4B).
BAI3 was originally determined by differen-
tial display to be similarly expressed in all
treatment groups (Table 1). However, semi-
quantitative reverse Northern blots revealed
that UV-B exposure increased BAI3 mRNA
expression approximately 3-fold. Similarly,
the expression of BAI3 was 4-fold higher in
the hypothalamus of animals in group
UVOP1 than in the control or OP1 group
(Figure 4C). 

As in the tadpole diencephalon (Figure
3B), BAI3 mRNA levels were increased by
UV-B treatment in the metamorph hypo-
thalamus (Figure 4C). As indicated previ-
ously, cytochrome C oxidase chain I mRNA
was unchanged in the tadpole diencephalon.
However, its expression in the metamorph
hypothalamus was increased 3-fold in ani-
mals exposed to UV-B. In contrast, levels of
cytochrome C oxidase chain I mRNA in the
hypothalamus of animals treated with OP
and OP plus UV-B (groups OP1 and
UVOP1, respectively) were similar to that in
controls (Figure 4D). NADH dehydroge-
nase subunit 4 expression was not regulated
(data not shown) as predicted by differential
display (Table 1). In addition, mRNA
expression of GAD65, plectin, arcadlin, and
NAP4 were similar across all treatments
(data not shown). 

Discussion

The present study shows that an early 10-
day exposure of R. pipiens tadpoles to OP
and UV-B radiation can disrupt normal
premetamorphic development. Body weight
before HLE was increased and the day at
HLE (i.e., Gosner stage 36) was significantly
accelerated by cotreatments of OP plus
UV-B. Disruption of metamorphosis has
been observed in other amphibian studies
when certain toxins (acetochlor, TCDD)
were combined with exogenous T3 (7,21).
Jung and Walker (21) found that 0.03 µg/L
TCDD accelerated metamorphosis and that
B. americanus tadpoles exposed to > 0.03
µg/L TCDD had a larger body mass at meta-
morphosis than vehicle-treated animals.
Cheek et al. (7) reported that the herbicide
acetochlor (10–8 M), in combination with
T3, accelerated forelimb emergence in R. pip-
iens. Contrary to the present study, they
observed no alteration of tadpole growth or
timing of HLE. Cheek et al. (7) proposed
that acetochlor enhanced T3 action, in the

presence of exogenous T3, to accelerate a
specific metamorphic event, forelimb emer-
gence. The authors further stated that ace-
tochlor might have decreased the enzymatic
activity of 5-deiodinase that inactivates T4 to
T3 and T3 to T2, effectively increasing
endogenous T3 concentrations and indi-
rectly accelerating metamorphosis.

The mechanisms involved in the changes
in metamorphic parameters in this study are
currently not well understood. The increase
in weight and acceleration of HLE may be
the result of a photochemical interaction
between OP and UV-B because metamor-
phic alterations were observed only in this
treatment group. The photointermediates of
OP have not yet been identified; however,
putative photochemical byproducts could
conceivably affect the hypothalamo–
pituitary–thyroid axis. Hypothalamic release
of CRH and the downstream effects on T3
concentrations could have been the target in
this case, as exogenous T3 was not required
to observe the metamorphic alterations.
Perhaps, as in the study by Cheek et al. (7),
the combination of specific stressors acceler-
ates specific metamorphic events. Regardless
of the mechanism, physiologic end points
such as metamorphosis provide promising
indicators of disruption of the hypothal-
amo–pituitary–thyroid axis (22,48) by envi-
ronmental contaminants.

Contrary to the laborious techniques of
subtractive hybridization and/or library
screening, our differential display strategy
proved to be an effective method to isolate
candidate genes rapidly from the leopard
frog, a species whose genome is not charac-
terized. We identified several functionally
and structurally important molecules solely
by cloning transcripts that displayed a pres-
ence/absence pattern in the differential
display. These included plectin, an interme-
diate filament-binding protein that provides
mechanical strength and structural integrity
to the cytoskeleton (49); NAP4, implicated
in coordinating various signaling pathways
including growth factor and cell adhesion
receptors (50); BAI2 and BAI3, membrane
proteins that inhibit neovascularization and
act as growth suppressors of glioblastoma
(primary brain tumor development) (51);
arcadlin, a novel cadherin molecule
expressed at the synapses that may play an
important role in activity-induced synaptic
reorganization underlying long-term mem-
ory (52); cytochrome C oxidase chain I, an
important mitochondrial proton-pumping
respiratory protein; and NADH dehydroge-
nase subunit 4, involved in glycolosis and
cellular respiration. The inclusion of the
well-characterized neurotransmitter enzymes
GAD65 and GAD67 allowed us to address
known hypothalamic pathways in addition

to the relatively unknown mechanisms of the
candidate molecules. 

The effects of OP on growth, metamor-
phosis, and hypothalamic gene expression
observed in this study provide further evi-
dence that OP is a biologically active conta-
minant at environmentally relevant levels.
The 1-nM OP exposure level used in our
study is 1,000 times lower than the concen-
tration used in an in vitro culture study
where OP (1 µM) induced PRL gene expres-
sion in rat pituitary cells (53). Additionally,
the 1-nM OP exposure is approximately
2,800 times less than the calculated LC50 for
R. pipiens tadpoles. The observed effects of
UV-B on gene expression are in addition to
the well-characterized effects of this stressor
on several aspects of amphibian development
and survival (11–14). 

NAP4 expression was increased by 1 nM
OP in the tadpole diencephalon, verifying
the pattern observed in the initial differential
display. NAP4 is a putative signaling mole-
cule widely expressed in various tissues and
during several developmental stages in mam-
mals (50). It contains a complete Src homol-
ogy region 2 (SH2) domain known to
interact with the middle SH3 domain of
Nck, an adaptor protein involved in tyrosine
kinase-mediated signal transduction for both
epidermal and vascular endothelial growth
factors (50,54). In addition, Nck affects
pathways leading to cellular mitogenesis and
morphogenesis (54). During early tadpole
development, the diencephalon undergoes
substantial restructuring, and the regulation
of intercellular communication is essential
for proper development and survival (23). In
this context, an increase in NAP4 expression
after OP treatment could affect important
aspects of development of the tadpole brain
(e.g., tyrosine kinase-mediated growth factor
signal transduction). However, deregulation
of certain signal transduction pathways asso-
ciated with cellular proliferation (e.g., Ras
GTPases, extracellular signal-related kinase,
ERK) can cause various abnormalities
including cancer (54). Nck, and thus NAP4,
appear to be functionally involved in Ras
GTPases and ERK. Thus, a disruption of
normal function caused by OP exposure
could lead to similar consequences with
respect to cellular proliferation in the hypo-
thalamus.

The expression of BAI3 was increased in
brain tissue of tadpoles and metamorphs
exposed to UV-B and was additionally
increased by the combination of OP plus
UV-B in the metamorph hypothalamus. The
expression of another member of the BAI
family, BAI2, was decreased by OP treatment
and was increased by the combination of OP
plus UV-B in the metamorph hypothalamus.
All members of the BAI family, composed
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thus far of BAI1, BAI2, and BAI3, contain a
seven-span transmembrane region with an
extracellular motif recognized by the inte-
grins and sequences corresponding to
thrombospondin type I repeats that can
inhibit experimental angiogenesis (51). A
local balance between stimulators and
inhibitors of neovascularization and vasopro-
liferation controls angiogenesis (51,55).
Angiogenesis inhibitors block the signaling
of cancer-cell inducers to surrounding blood
vessels and inhibit the vasoproliferation nec-
essary for the growth, persistence, and
metastasis of solid tumors (55). The regula-
tion of BAI-related molecules may be impor-
tant for capillary formation and blood
supply to the developing hypothalamus dur-
ing metamorphosis. 

NAP4 is also associated with signal
transduction events involving inducers of
vasoproliferation and has been shown to
have an oncogenic role when overexpressed
in fibroblasts (54). Although a decrease in
expression of either BAI2 or BAI3 was not
observed in the tadpole diencephalon, early
exposure to OP did decrease BAI2 expres-
sion in the metamorph hypothalamus.
NAP4 expression was significantly increased
by OP in the tadpole diencephalon, which
might stimulate signal transduction events
that would lead to vasoproliferation and in
metamorphs, the endogenous inhibitors of
such vasoproliferation appear suppressed.
Additionally, UV-B is a known carcinogen,
and in both the tadpole diencephalon and
metamorph hypothalamus BAI3 expression
appears to be sensitive to UV-B treatment,
producing a significant increase of expres-
sion. The increases in expression of both
NAP4 and BAI3 after UV-B exposure could
modulate vasoproliferation in the developing
tadpole brain, perhaps contributing to dis-
ruption of neuroendocrine function. 

GAD67 expression in the metamorph
hypothalamus was altered after early exposure
to OP and UV-B. Both GAD65 and GAD67
mediate the synthesis of GABA, but their dis-
tribution in the brain suggests divergent func-
tional roles (56). GABA is the primary
inhibitory neurotransmitter in the central ner-
vous system and acts to induce membrane
hyperpolarizations by binding to postsynaptic
GABAA receptors and presynaptic GABAB
receptors (56). GABA also acts as an impor-
tant neurotrophic and neurodifferentiating
signal molecule during early brain develop-
ment (57). Interestingly, the gene expression
pattern of BAI2 is similar to that of GAD67
in metamorph hypothalami, suggesting possi-
ble relationships between angiogenesis and
GABA neurons during metamorphic develop-
ment of the hypothalamus.

GABA is found throughout the hypo-
thalamus and regulates most aspects of

hypothalamic function (58). GABA has both
stimulatory and inhibitory effects on thy-
rotropin (TSH) release in mammals (58). It
has also been shown that GABA inhibits PRL
release in both fish and mammals (58,59). In
ovariectomized rats, GABA lowered plasma
TSH via actions on the dopamine system.
However, the inhibitory effects of GABA on
TSH release were reduced in rats treated with
E2 and progesterone (58). On the other
hand, GABAergic stimulation of TSH release
in both males and ovariectomized female rats
has also been reported (58). In amphibians,
CRH stimulates pituitary TSH release,
which in turn enhances thyroid production
of T3, the hormonal inducer of metamorpho-
sis (24,26). PRL, on the other hand, antago-
nizes amphibian metamorphosis and
promotes larval growth (24,26). Given that
cotreatment with OP (1 nM) plus UV-B
increases GAD67 mRNA levels and OP (1
µM) plus UV-B advances metamorphosis,
there may be a GABAergic component to the
control of TSH and/or PRL release in the
leopard frog. 

We found that the expression of
cytochrome C oxidase chain I was increased
approximately 3-fold in the metamorph
hypothalamus as a result of early exposure to
UV-B. This molecule has been shown to be
T3-regulated in the Xenopus gene expression
program for neural development and thus is
associated with changes in the diencephalon
during metamorphosis (23). Cytochrome C
oxidase is an important mitochondrial pro-
ton-pumping respiratory protein that cat-
alyzes the transfer of electrons from
cytochrome C to oxygen (23). The extensive
brain restructuring involved in metamorpho-
sis and the corresponding metabolic demands
during cell proliferation and differentiation
would likely require increased energy via the
cytochrome C pathway. Denver et al. (23)
proposed that the increased expression of
cytochrome C oxidase subunit I in tadpoles
might be correlated with changes in brain
oxidative phosphorylation. The data in our
study suggest that UV-B exposure alters the
expression of this T3-responsive molecule,
indicating an alteration of a standard meta-
bolic pathway in amphibian metamorphosis. 

One major question remaining relates to
the unexpected alterations of gene expression
profiles when UV-B and OP were given
together. For example, in the tadpole dien-
cephalon, OP alone induces NAP4 expres-
sion, a response that is abolished in the
presence of UV-B. Moreover, UV-B induced
the expression of BAI3 in the tadpole dien-
cephalon, and this effect was eliminated with
cotreatment of OP. These rather complex
modulated responses were also apparent in
the metamorphs. Both GAD67 and BAI2
were reduced in OP-exposed animals, but

not affected by UV-B; yet the cotreatments
induced 2- to 3-fold increases in the expres-
sion of these molecules in the hypothalamus.
Possible mechanisms for this interaction are
speculative at best but likely involve complex
gene interactions, perhaps as a result of
altered metabolic pathways or signal trans-
duction systems. It is clear from our data
that UV-B increases cytochrome C gene
expression in the metamorph hypothalamus,
which could be reasonably expected to affect
cytochrome C activity, perhaps affecting cel-
lular metabolism and OP action. Moreover,
interactions between signal transduction
pathways are known to occur in neuroen-
docrine systems (60,61) and during embry-
onic development of the brain and spinal
cord (62,63). Although we do not yet know
which signaling pathways are involved in the
UV-B and OP responses, we hypothesize
that there may be an interaction in several
downstream signaling mechanisms that
could account for our observations. The
molecular mechanisms involved should be
explored in future work. 

In summary, this study represents a
novel technique in toxicology that combines
physiologic and molecular end points for a
species native to North America. The exact
mechanism of action of OP and UV-B,
alone or in combination, on the expression
of the various candidate molecules is not
well understood at this time. It is not possi-
ble, at present, to establish a cause-and-effect
relationship between the observed changes in
hypothalamic gene expression and metamor-
phosis. However, this study provides confir-
mation that stressors previously determined
to affect amphibians can be assessed at a
more subtle level and lends precedence for
using molecular techniques to address toxi-
cologic questions. This study is also among
the first to attempt such work in the frog
tadpole. 

Recently, there has been an effort to use
large-scale or whole-genome approaches to
analyze the effects of drugs and toxicants.
The standard Northern blot experiments
have now been superseded by dot blots and
cDNA microarrays, which can simultane-
ously determine expression patterns of many
genes. The regulation of gene expression
occurs primarily at the transcriptional
level—hence the interest in developing tech-
niques to measure differentially expressed
genes via mRNA (64). It is important to
recognize that changes at the mRNA level
that were determined here using reverse
Northern dot blots may not accurately pre-
dict the changes in the functional protein. In
fact, there is a relatively poor correlation
between gene and protein expression, and
often the regulation of protein function is at
the translational or post-translational level (64).
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The functional analysis of protein expression
would help determine the precise roles of these
molecules in the context of amphibian hypo-
thalamic development and metamorphosis.
Nevertheless, early life exposure to a persistent
EDC and a subambient level of UV-B radia-
tion alters premetamorphic development and
regulates the expression of hypothalamic genes
important for signal transduction, angiogene-
sis, and neurotransmitter synthesis.
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